2 research outputs found

    A FRAMEWORK FOR CREDIBILITY ASSESSMENT OF SUBJECT-SPECIFIC PHYSIOLOGICAL MODELS

    Get PDF
    Physiological closed-loop controllers and decision support systems are medical devices that enable some degree of automation to meet the needs of patients in resource-limited environments such as critical care and surgical units. Traditional methods of safety and effectiveness evidence generation such as pre-clinical animal and human clinical studies are cost prohibitive and may not fully capture different performance attributes of such complex safety-criticalsystems primarily due to subject variability. In silico studies using subject-specific physiological models (SSPMs) may provide a versatile platform to generate pre-clinical and clinical safety evidence for medical devices and help reduce the size and scope of animal studies and/or clinical trials. To achieve such a goal, the credibility of the SSPMs must be established for the purpose it is intended to serve. While in the past decades significant research has been dedicated towards development oftools and methods for development and evaluation of SSPMs, adoption of such models remains limited, partly due to lack of trust in SSPMs for safety-critical applications. This may be due to a lack of a cohesive and disciplined credibility assessment framework for SSPMs. In this dissertation a novel framework is proposed for credibility assessment of SSPMs. The framework combines various credibility activities in a unified manner to avoid or reduce resource intensive steps, effectively identify model or data limitations, provide direction as to how to address potential model weaknesses, and provide much needed transparency in the model evaluation process to the decision-makers. To identify various credibility activities, the framework is informed by an extensive literature review of more mature modeling spaces focusing on non- SSPMs as well as a literature review identifying gaps in the published work related to SSPMs. The utility of the proposed framework is successfully demonstrated by its application towards credibility assessment of a CO2 ventilatory gas exchange model intended to predict physiological parameters, and a blood volume kinetic model intended to predict changes in blood volume inresponse to fluid resuscitation and hemorrhage. The proposed framework facilitates development of more reliable SSPMs and will result in increased adoption of such models to be used for evaluation of safety-critical medical devices such as Clinical Decision Support (CDS) and Physiological Closed-Loop Controlled (PCLC) systems

    Credibility Evidence for Computational Patient Models Used in the Development of Physiological Closed-Loop Controlled Devices for Critical Care Medicine

    Get PDF
    Physiological closed-loop controlled medical devices automatically adjust therapy delivered to a patient to adjust a measured physiological variable. In critical care scenarios, these types of devices could automate, for example, fluid resuscitation, drug delivery, mechanical ventilation, and/or anesthesia and sedation. Evidence from simulations using computational models of physiological systems can play a crucial role in the development of physiological closed-loop controlled devices; but the utility of this evidence will depend on the credibility of the computational model used. Computational models of physiological systems can be complex with numerous non-linearities, time-varying properties, and unknown parameters, which leads to challenges in model assessment. Given the wide range of potential uses of computational patient models in the design and evaluation of physiological closed-loop controlled systems, and the varying risks associated with the diverse uses, the specific model as well as the necessary evidence to make a model credible for a use case may vary. In this review, we examine the various uses of computational patient models in the design and evaluation of critical care physiological closed-loop controlled systems (e.g., hemodynamic stability, mechanical ventilation, anesthetic delivery) as well as the types of evidence (e.g., verification, validation, and uncertainty quantification activities) presented to support the model for that use. We then examine and discuss how a credibility assessment framework (American Society of Mechanical Engineers Verification and Validation Subcommittee, V&V 40 Verification and Validation in Computational Modeling of Medical Devices) for medical devices can be applied to computational patient models used to test physiological closed-loop controlled systems
    corecore